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A complete second-order solution is presented for the three-dimensional wave "eld produced
by the snake-like motion of an array of wave generators located at one end of a semi-in"nite
rectangular tank. The solutions to the boundary-value problems at "rst and second order are
obtained by the method of eigenfunction expansions and are correct to second order in
wave-maker stroke (wave amplitude). This frequency-domain solution may be considered as an
extension of the earlier (1991) two-dimensional (narrow #ume) solution of Hudspeth & Sulisz.
Numerical results are presented that illustrate the in#uence of the various wave maker and
basin parameters on the generated wave "eld. ( 2000 Academic Press
1. INTRODUCTION

IN CERTAIN APPLICATIONS, wave directionality plays an important role in the hydrodynamic
loading experienced by coastal and ocean structures. To address this issue, many experi-
mental facilities consist of a relatively wide wave basin in which directional seas can be
produced by the prescribed motion of an array of wave generators located along one or
more of the basin walls. The generated wave "eld is produced based on the snake principle,
namely that the spatially sinusoidal motion of an in"nitely long wave maker will produce
regular waves which propagate obliquely to the generator plane [see, for example, Dean
& Dalrymple (1984)]. However, the "nite width of the basin results in the waves produced
by this technique being in#uenced by sidewall re#ections and any interpretation of the
results from this type of laboratory facility must take this re#ection into account. Funke
& Miles (1987) discuss an extension of the snake principle to account for the e!ects of
"nite tank width. Dalrymple (1989) applied the mild slope equation to predict the wave "eld
generated by snake-like wave maker motions in a "nite basin with fully re#ecting sidewalls.
He also determined the modi"ed wave generator signal necessary to obtain desired wave
conditions at a speci"ed distance from the wave makers, including sidewall re#ections.
The directional wave "eld produced by an array of wave generators moving according to
the snake principle has been studied by Isaacson(1995) using a boundary element approach,
and by Williams & Crull (1996) using a tank Green function which explicitly satis"es the
no-#ow conditions at the sidewalls. These latter two studies have also examined the
in#uence on the wave "eld of placing a vertical cylinder in the test area of the basin.

However, all of the above solutions assume small-amplitude wave-maker motions and so
are of limited usefulness when dealing with more extreme wave conditions. In order to
predict the nonlinear wave "eld produced by "nite-amplitude wave-maker motions, several
investigators have approached the problem using the Stokes expansion procedure, keeping
0889}9746/00/050575#18 $35.00/0 ( 2000 Academic Press
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terms up to second order in wave-maker stroke. Up to the present time, second-order
solutions for wave motions have been restricted to two dimensions, which corresponds to
a narrow tank, or #ume, and a planar wave maker. Madsen (1971) presented an approxim-
ate solution for the second-order wave "eld produced by a planar wave maker in which the
e!ect of the "rst-order evanescent wave "eld was neglected, therefore his solution is valid for
long waves. Daugaard (1972) and Flick & Guza (1980) have presented other approximate
second-order solutions for piston and #ap-type wave makers, respectively. Ottesen-Hansen
et al. (1980) and Sand (1982) discussed the elimination of spurious second-order wave
components by imposing compensating second-order wave-maker motions. Sand &
Mansard (1986) extended the approach and presented a technique necessary to produce the
correct higher harmonics in an irregular sea state. Hudspeth & Sulisz (1991) and Sulisz
& Hudspeth (1993a,b) presented a complete second-order frequency-domain solution for
the wave "elds produced by the monochromatic oscillations of both #ap- and piston-type
wave makers by an eigenfunction expansion approach. Their solution has been extended to
deal with bichromatic wave-maker motions by Moubayed & Williams (1994) and, more
recently, by Scha!er (1996). Zhang & Williams (1996, 1999) have presented second-order
time-domain solutions for monochromatic and bichromatic wave-maker motions, with
particular focus on developing appropriate radiation conditions for the second-order wave
components.

Any extension of the existing two-dimensional analyses to provide a wave generator
signal to eliminate spurious second-order wave components in a three-dimensional wave
basin requires as a "rst step a complete second-order wave-maker solution for this
geometry. Such a solution will be presented herein, where a complete second-order theory is
developed for the three-dimensional wave "eld produced by the snake-like motion of an
array of wave generators located at one end of a semi-in"nite rectangular tank. The
solutions to the boundary-value problems at "rst and second order are obtained by
the method of eigenfunction expansions and are correct to second order in wave-maker
stroke (wave amplitude). The solution is validated by comparison with two limiting cases,
namely the "rst-order three-dimensional solution of Williams & Crull (1996) and the
second-order two-dimensional solution of Hudspeth & Sulisz (1991). Then, numerical
results are presented that illustrate the in#uence of the various wave maker and basin
parameters on the generated wave "eld, in particular the in#uence of wave angle and basin
width is investigated.

2. THEORETICAL DEVELOPMENT

A segmented wave generator occupies one wall of a semi-in"nite rectangular basin of width
b and constant water depth h. Cartesian coordinates (x, y, z) are employed with the x- and
y-axis in the horizontal plane. The z-axis is directed vertically upwards from an origin on
one tank wall at the still water level, i.e. the tank walls are located at y"0 and y"b
(Figure 1). The wave generators are assumed to undergo a prescribed small-amplitude
oscillation of frequency u, so that the associated #uid motion may be described by Stokes
wave theory. Under the assumption of an inviscid, incompressible #uid undergoing irrota-
tional motion, the wave motion may be described in terms of a velocity potential U (x, y, z, t)
such that the #uid velocity vector q"$U. The #uid velocity potential, free-surface elevation,
g (x, y, t), and Bernoulli constant, B (t), are assumed expressible in Stokes series, that is

U (x, y, z, t)"eU(1) (x, y, z, t)#e2U(2)#2 , (1)

g (x, y, t)"eg(1) (x, y, t)#e2g(2)#2 , (2)

B (t)"eB(1)(t)#e2B(2)#2 . (3)



Figure 1. De"nition sketch.
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The horizontal wave-maker displacement about the mean position, x"0, is given by

X (y, z, t)"e f (z) ei(j
0
y!ut)

#CC, (4)

where CC implies the conjugate part of the preceding expression, f (z) is the (real) wave-
maker shape function, and j

0
is the y-component of the wavenumber of the desired waves,

de"ned by j
0
"c

0
sin h where h is the angle the waves make with the x-axis, and the

wavenumber c
0

satis"es the linear dispersion relation u2"gc
0

tanh c
0
h.

The "rst-order problem, at O (e), is given by

$2U(1)"0 for x50, !h4z40, and 04y 4b, (5)

LU(1)

Lz
"0 for x50, z"!h, and 04y4b, (6)

LU(1)

Ly
"0 for x50, !h4z40, and y"0, b, (7)

LU(1)

Lz
!

Lg(1)

Lt
"0 for x50, z"0, and 04y4b, (8)

LU (1)

Lt
#gg(1)"B

1
(t) for x50, z"0, and 04y4b, (9)

LU(1)

Lx
"

LX
Lt

for x"0, !h4z40, and 04y4b, (10)

where g is the acceleration due to gravity.
At the second order, O (e2), the boundary-value problem describing the #uid motion may

be written as

$2U(2)"0 for x50, !h4z40, and 04y4b, (11)

LU(2)

Lz
"0 for x50, z"!h, and 04y4b, (12)

LU(2)

Ly
"0 for x50, !h4z40, and y"0, b, (13)
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LU(2)

Lz
!

Lg(2)

Lt
!

Lg(1)

Lx
LU(1)

Lx
!

Lg(1)

Ly
LU(1)

Ly
#g(1)

L2U(1)

Lz2
"0

for x50, z"0, and 04y4b, (14)

LU(2)

Lt
#gg(2)#g(1)

L2U (1)

LzLt
#

1
2

D$U (1) D2"B
2
(t) for x50, z"0, and 04y4b, (15)

LU(2)

Lx
!

LU(1)

Ly
LX
Ly

!

LU (1)

Lz
LX
Lz

#X
L2U (1)

Lx2
"0 for x"0, !h4z40, and 04y4b.

(16)

Finally, at large distances from the wave generators the potentials U (1) and U (2) must satisfy
suitable radiation conditions which ensure the correct asymptotic behavior of the generated
wave "eld.

3. FIRST-ORDER SOLUTION

A suitable solution to the "rst-order boundary problem may be written as

U(1)"
=
+
n/0

[u
n
cos a

n
y e~*u5#CC], (17)

where

u
n
"

=
+

m/0

A
mn

e~bmn x
cos k

m
(z#h)

cos k
m
h

, (18)

and the wave numbers are de"ned by a
n
"nn/b, for n"0, 1, 2,2 ; the k

m
are de"ned by

k
m
"Mic

0
, c

1
,2 , c

m
,2N , where the c

m
for m51 are the positive real roots of

u2#gc
m

tan c
m
h"0; and the b

mn
are given by

b
mn
"G

!iJDk2
m
#a2

n
D if k2

m
#a2

n
(0,

Jk2
m
#a2

n
if k2

m
#a2

n
'0.

(19)

It is noted from equation (19) that the only value of the index m that can result in an
imaginary value of b

mn
is m"0. The coe$cients A

mn
appearing in equation (18) may be

determined utilizing the wave-maker boundary condition, equation (10), and the ortho-
gonality properties of the vertical eigenfunctions, and are given by

A
mn
"

4e
n
uk

m
cos k

m
h

bb
mn

[2k
m
h#sin 2k

m
h]

iP
b

0

eijy cos a
n
y dy P

0

~h

f (z) cos k
m
(z#h) dz, (20)

in which e
0
"1, and e

n
"2, for n51.

From equation (9), the corresponding water surface elevation is then given by

g(1) (x, y, t)"
=
+
n/0

=
+

m/0

ui

g
A

mn
e~bmnx cos a

n
y e~*ut#CC (21)

and, by imposing a zero mean on g(1) (x, y, t) in the far "eld, it is found that B
1
(t),0. Far

from the wave maker, the evanescent wave modes may be neglected and the wave pro"le
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becomes

g(1) (x, y, t )&
n*

+
n/0

ui

g
A

0n
e~b0nx cos a

n
y e~*ut#CC, (22)

in which n* is the maximum value of n such that c2
0
!a2

n
'0.

4. SECOND-ORDER SOLUTION

The second-order free-surface boundary conditions, equations (14) and (15), may be com-
bined to yield the following condition on U(2) alone:

, (U (2))"
L2U(2)

Lt2
#g

LU(2)

Lz
"

1

g

LU(1)

Lt

L
Lz A

L2U(2)

Lt2
#g

LU(2)

Lz B!
L
Lt

(D$U(1) D2)#
LB

2
Lt

. (23)

It will subsequently be determined that the term LB
2
/Lt in equation (23) is identically zero.

The second-order velocity potential will now be decomposed into complementary homo-
geneous and inhomogeneous solutions on the wave-maker surface and #uid-free-surface
according to

U(2) (x, y, z, t)"U(2)
w

(x, y, z, t)#U(2)
f

(x, y, z, t), (24)

in which U(2)
w

(x, y, z, t) is a forced wave-maker potential satisfying a homogeneous free-
surface condition, and U(2)

f
(x, y, z, t) is a potential independent of the wave-maker motion

which satis"es an inhomogeneous free-surface condition, namely

, (U(2)
w

)"0, (25)

, (U(2)
f

)", (U(2)). (26)

The potentials U(2)
w

and U(2)
f

can be written as

U(2)
w

(x, y, z, t)"u
w
(x, y, z, t ) e~2*ut#t

w
(x, y, z )#CC, (27)

U(2)
f

(x, y, z, t)"u
f
(x, y, z, t )e~2*ut#t

f
(x, y, z)#CC, (28)

in which it is noted that t
w

and t
f

are time-independent potentials.
From equation (23) the following expression is obtained:

g
Lu

f
Lz

!4u2u
f

"

i

2

=
+

m/0

=
+
n/0

=
+
j/0

=
+
k/0
C
3u5

g2
#2ub

jm
b
kn
#uk2

k
!2ua

m
a
nD

]A
jm

A
kn

e~(bjm`bkn)x cos (a
m
#a

n
)y

#

i

2

=
+

m/0

=
+
n/0

=
+
j/0

=
+
k/0
C

3u5

g2
#2ub

jm
b
kn
#uk2

k
#2ua

m
a
nD

]A
jm

A
kn

e~(bjm`bkn)x cos (a
m
!a

n
) y , (29)

g
Lt

f
Lz

"!

i

2

=
+

m/0

=
+
n/0

=
+
j/0

=
+
k/0

uk2
k
AM

jm
A

kn
e!(bM

jm
#b

kn
)x

[cos (a
m
#a

n
)y#cos (a

m
!a

n
)y].

(30)
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Equation (30) is valid for (m!n)2#( j!k)2O0. When (m!n )2#( j!k)2"0, the right-
hand side of the equation becomes zero.

Suitable forms for the free-surface potentials u
f

and t
f

are

u
f
"

=
+

m/0

=
+
n/0

=
+
j/0

=
+
k/0
CQ (m, n, j, k) e~(bjm`bkn)x

cosJ(b
jm
#b

kn
)2!(a

m
#a

n
)2 (z#h)

cos J(b
jm
#b

kn
)2!(a

m
#a

n
)2 h

]cos (a
m
#a

n
) y

#Q* (m, n, j, k) e~(bjm`bkn)x
cosJ(b

jm
#b

kn
)2!(a

m
!a

n
)2 (z#h)

cosJ(b
jm
#b

kn
)2!(a

m
!a

n
)2 h

cos (a
m
!a

n
) yD,

(31)

t
f
"

=
+

m/0

=
+
n/0

=
+
j/0

=
+
k/0
CE (m, n, j, k ) e!(bM

jm
#b

kn
)x cosJ(bM

jm
#b

kn
)2!(a

m
#a

n
)2 (z#h)

cosJ(bM
jm
#b

kn
)2!(a

m
#a

n
)2 h

]cos (a
m
#a

n
) y

#E* (m, n, j, k ) e!(bM
jm
#b

kn
)x cosJ(bM

jm
#b

kn
)2!(a

m
!a

n
)2 (z#h)

cosJ(bM
jm
#b

kn
)2!(a

m
!a

n
)2h

cos (a
m
!a

n
)yD,

(32)

in which

Q (m, n, j, k)"
!i

2gJ(b
jm
#b

kn
)2!(a

m
#a

n
)2

A
3u5

g2
!2ua

m
a
n
#2ub

jm
b
kn
#uk2

k BA
jm

A
kn

tanJ(bM
jm
#b

kn
)2!(a

m
#a

n
)2h#4u2

,

(33)

Q* (m, n, j, k)"
!i

2gJ(bM
jm
#b

kn
)2!(a

m
!a

n
)2

]
A
3u5

g2
#2ua

m
a
n
#2ub

jm
b
kn
#uk2

k B A
jm

A
kn

tan J(b
jm
#b

kn
)2!(a

m
!a

n
)2 h#4u2

, (34)

E (m, n, j, k)"
i

2gJ(bM
jm
#b

kn
)2!(a

m
#a

n
)2

uk2
k
AM

jm
A

kn
tanJ(bM

jm
#b

kn
)2!(a

m
#a

n
)2h#4u2

, (35)

E* (m, n, j, k)"
i

2gJ(bM
jm
#b

kn
)2!(a

m
!a

n
)2

uk2
k
AM

jm
A

kn
tanJ(bM

jm
#b

kn
)2!(a

m
!a

n
)2h#4u2

.

(36)
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The wave-maker boundary condition at second order, equation (16), may be rearranged
and written as

R[U(2)]"
LU(2)

Lx
"

LU(1)

Ly

LX

Ly
#

LU(1)

Lz

LX

Lz
!X

L2U(1)

Lx2

"F (y, z) e~2*ut#¹ (y, z )#CC for x"0, !h(z(0, and 0(y(b, (37)

where

F (y, z)"
=
+
n/0

e*jyC f
z

Lu
n

Lz
cos a

n
y!ija

n
fu

n
sin a

n
y!f

L2u
n

Lx2
cos a

n
yD, (38)

¹ (y, z)"
=
+
n/0

e*jyC f
z

LuN
/

Lz
cos a

n
y!ija

n
fuN

n
sin a

n
y!f

L2uN
n

Lx2
cos a

n
yD. (39)

Suitable forms for the wave-maker potentials u
w

and t
w

are

u
w
"

=
+
n/0

=
+

m/0

B
mn

e~kmnx
cos m

m
(z#h)

cos m
m
h

cos a
n
y, (40)

t
w
"

4
+
n/0

4
+

m/0

C
mn

e!l
mn

x cos f
m
(z#h )

cos f
m
h

cos a
n
y, (41)

where the wave numbers are de"ned by f
m
"mn/b, for m50; the m

m
are de"ned by

m
m
"Mip

0
, p

1
,2 ,p

m
,2N, where p

0
is the positive real root of 4u2"gp

0
tanhp

0
h; the

p
m

for m'1 are the positive real roots of 4u2#gp
m

tan p
m
h"0; and the k

mn
and the

t
mn

are given by

k
mn
"G

!iJDm2
m
#a2

n
D if m2

m
#a2

n
(0,

Jm2
m
#a2

n
if m2

m
#a2

n
'0,

(42)

t
mn
"Jf2

m
#a2

n
. (43)

It is noted from equation (42) that the only value of the index m that can result in an
imaginary value of k

mn
is m"0.

The potential coe$cients appearing in equations (40) and (41) may be determined
through the modi"ed second-order wave-maker boundary condition, namely

R[U2
w
]"R[U2]!R[U2

f
], (44)

and the orthogonality properties of the vertical eigenfunctions. The potential coe$cients
may be written as

B
mn
"

4e
n
m
m
cos m

m
h

bk
mn

(sin 2m
m
h#2m

m
h) GP

0

~h
CP

b

0
A

Lu
f

Lx K
x/0

!F (y, z)B cos a
n
y dyD

]cos m
m
(z#h) dzH, (45)

C
mn
"

e
m
e
n
cosf

m
h

bt
mn

h GP
0

~h
CP

b

0
A
Lt

f
Lx K

x/0

!¹ (y, z)B cosa
n
ydyD

]cos f
m
(z#h) dzH. (46)
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The second-order free-surface elevation g(2) (x, y, t ) may now be obtained by rearranging
equation (15) to give

g(2)"!

1

g

LU(2)

Lt
#

1

g2

LU(1)

Lt

L2U(1)

LzLt
!

1

2g
D$U (1) D2

#

B
2
(t)

g
for x50, 04y4b, z"0. (47)

The Bernoulli constant at second order, B
2
(t), is calculated by imposing a zero mean on

g(2) (x, y, t ) in the far "eld, and is found to be

B
2
(t)"

n*

+
n/0

DA
0n

D2 Dk
0
D2

e
n
cos2 k

0
h

. (48)

At large distances from the wave maker, the evanescent wave modes may be neglected
and the second-order water surface pro"le becomes

g(2) (x, y, t)&
n*

+
m/0

n*

+
n/0
GC

2iu
g

Q (m, n, 0, 0)!A
3u4

4g3
#

b
0m

b
0n

4g
!

a
m
a
n

4g BA
0m

A
0nD

]cos (a
m
#a

n
) y

#C
2iu
g

Q* (m, n, 0, 0)!A
3u4

4g3
#

b
0m

b
0n

4g
#

a
m
a
n

4g BA
0m

A
0nD cos (a

m
!a

n
)yH

]e![(b
0m

#b
0n

)x#2iut]
#

n*

+
m/0

n*

+
n/0
GA

3u4

4g3
!

bM
0m

b
0n

4g
#

a
m
a
n

4g B cos (a
m
#a

n
) y

#A
3u4

4g3
!

bM
0m

b
0n

4g
!

a
m
a
n

4g B cos (a
m
!a

n
) yHAM 0mA

0n
e!(bM

0m
#b

0n
)x

#

n*

+
n/0

2iu
g

B
0n

cos a
n
y e~(k0nx`2*ut)#

n*

+
n/0

DA
0n

D2 Dk
0
D2

ge
n
cos2 k

0
h
#CC, (49)

in which n* is the maximum value of m such that p2
0
!a2

n
'0.

5. NUMERICAL EXAMPLES

The correctness of the present theory and the associated computer program is "rst veri"ed
through comparisons with two limiting solutions appearing in the open literature.
Figure 2 presents a comparison of the "rst-order solution for water surface elevation in the
tank, obtained by the eigenfunction expansion approach, with the Greens function solution
of Williams & Crull (1996). These results are for an array of full-draft #ap-type wave makers,
whose displacements are de"ned by

X (y, z, t)"A
0
(1#z/h) e*(j0y~ut)#CC, (50)

where A
0

is the amplitude of the wave-maker stroke at the still water level. The water
surface elevation in the "gure is nondimensionalized by A

0
and ¸ is the wavelength,

¸"2n/c
0
. The "rst-order solution was obtained by truncating the in"nite series in the

expressions for the potential after 20 terms; increasing the number of terms to 40 did not
change the solution by more than 1%, indicating that convergence had essentially been



Figure 2. Comparison of dimensionless "rst-order water surface pro"les at t"0 obtained by present approach
[lines] with results of Williams & Crull (1996) (symbols) for h/b"1, b/¸"1)6 and h"303: (a) y"b/4; (b) y"b/2;

(c) y"3b/4.
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achieved. Comparisons are presented at y"b/4, b/2 and 3b/4, and it can be seen that the
agreement is excellent at each location. Figure 3 presents a comparison of the ratios of
the amplitudes of the second-order, far-"eld, free (wave maker) to the forced (free-surface)
wave elevations with the two-dimensional solution of Sulisz & Hudspeth(1993a). The two
curves correspond to the inclusion, or neglect, of the second-order evanescent interaction
potential arising from the evanescent wave terms at "rst order. The "rst- and second-order
solutions were obtained by truncating the in"nite series in the expressions for the potentials
after 20 and 40 terms, respectively. Again, increasing the number of terms beyond 40 did not
change the second-order solution by more than 1}2%. Excellent agreement is observed over
the entire range of interest. The dimensionless wavenumber on the horizontal axis is h/¸,
where ¸ is the "rst-order wavelength de"ned above.

Several numerical examples are now presented that illustrate the in#uence of wave angle
and basin width on the generated wave "eld. In all of the following cases, the waves are
produced by an array of full-draft #ap-type wave makers of stroke A

0
"0)2 m oscillating at



Figure 3. Comparison of ratios of amplitude of second-order wave maker induced to free-surface induced
far-"eld wave amplitudes obtained by present approach (lines) with results of Sulisz & Hudspeth (1993a) (symbols)
for full-draft #ap-type wave maker. Notations: j with evanescent interaction potential; d without evanescent

interaction potential.
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a period ¹"2)2 s, and the water depth h"5 m. Based on the above numerical compari-
sons, all numerical results have been obtained by truncating the in"nite series in the
expressions for the "rst- and second-order potentials after 20 and 40 terms, respectively. In
the "gures, the wave generators are located at x"0, and the x- and y-coordinates have
been nondimensionalized by the wavelength ¸. The water-surface elevation is dimensional.

Figure 4 presents the instantaneous "rst-order, second-order and total ("rst plus second-
order) water-surface elevations at t"0, for a basin width b"20 m, and wave heading
h"303. The form of the "rst- and second-order wave "elds can clearly be seen in the "gure.
In particular, the re#ection of the waves from the sidewall of the tank is shown. In this
example, the maximum "rst-order wave elevation is 0)87 m, while the maximum second-
order wave elevation is 0)22 m. These maxima occur along the tank wall y"b where the
primary wave re#ection is occurring. The maximum total ("rst- plus second-order) surface
elevation at this location is 1)08 m. Figures 5 and 6 present the instantaneous "rst-order,
second-order and total ("rst- plus second-order) water surface elevations at t"0 for basin
widths b"35 and 50 m, respectively. By comparing Figures 4, 5, and 6, it can be seen that
as the tank width is increased, the wave re#ections from the sidewalls are more clearly
apparent. For the 35 m tank (Figure 5), the maximum "rst-order wave elevation is 0)79 m,
while the maximum second-order wave elevation is 0)26 m. Again, these maxima occur
along the tank wall y"b and the maximum total ("rst- plus second-order) surface elevation
at this instant is 0)98 m. The corresponding values of the "rst-order, second-order and total
surface elevation maxima in Figure 6 are 0)82, 0)19, and 0)99 m, respectively.

Figure 7 presents the instantaneous "rst-order, second-order and total ("rst- plus sec-
ond-order) water surface elevations at t"0 for a wave heading h"453 and a basin width
b"50 m. In Figure 7, the maximum "rst-order wave elevation is 0)97 m, and the maximum
second-order wave elevation is 0)32 m. The maximum total ("rst- plus second-order) surface
elevation at this instant is 1)28 m. Again, re#ection of both the "rst- and second-order waves



Figure 4. Instantaneous "rst-order (top), second-order (middle) and total (bottom) water surface elevations at
t"0 for A

0
"0)2 m, ¹"2)2 s, h"5 m, b"20 m and h"303.
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Figure 5. Instantaneous "rst-order (top), second-order (middle) and total (bottom) water surface elevations at
t"0 for A

0
"0)2 m, ¹"2)2 s, h"5 m, b"35 m and h"303.
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Figure 6. Instantaneous "rst-order (top), second-order (middle) and total (bottom) water surface elevations at
t"0 for A

0
"0)2 m, ¹"2)2 s, h"5 m, b"50 m and h"303.
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Figure 7. Instantaneous "rst-order (top), second-order (middle) and total (bottom) water surface elevations at
t"0 for A

0
"0)2 m, ¹"2)2 s, h"5 m, b"50 m and h"453.
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from the tank walls can clearly be seen. The results in this "gure may be compared directly
with those in Figure 5, where the wave heading h"303, in order to illustrate the in#uence of
wave heading on the numerical results. As intuitively expected, the h"453 case, which
results in a higher angle of wave incidence on the sidewall, yields larger maxima on the
sidewall due to the re#ection process.

The relative contributions of the second-order components to the total wave "eld are
further illustrated in Figures 8 and 9, which present the instantaneous "rst- order, second-
order and total ("rst- plus second-order) water surface elevations at t"0 at longitudinal
Figure 8. (a) First-order (b), second-order, and (c) total, water surface elevations at t"0 for A
0
"0)2 m,

¹"2)2 s, h"5 m, b"20 m and h"303. Notation: **, y"b/4; - - - -, y"b/2; ----,y"3b/4.



Figure 9. (a)First-order, (b) second-order, and (c) total water surface elevations at t"0 for A
0
"0)2 m,

¹"2)2 s, h"5 m, b"50 m and h"303. Notation: ***, y"b/4, - - - -, y"b/2, ------, y"3b/4.
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sections along the tank, de"ned by y"b/4, b/2, and 3b/4. The results in Figure 8 correspond
to a basin width b"20 m while those in Figure 9 are for the widest basin studied, b"50 m.
In both cases the wave heading is h"303. It can be seen that because of the wave direction,
for a given x-location in the wave tank the surface elevations are, in general, larger at
y"3b/4, i.e., closer to the sidewalls. Furthermore, it is noted that the second-order e!ects in
the narrower tank (Figure 8) exhibit peak values larger than those in the wider tank
(Figure 9), and these di!erences are evident in the estimates of the total elevations.
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6. CONCLUSIONS

A complete second-order solution has been presented for the wave "eld generated by the
snake-like motion of an array of wave generators located at one end of a semi-in"nite
rectangular basin. The solutions to the boundary-value problems at "rst and second order
are obtained by the method of eigenfunction expansions. The solution has been veri"ed
against previously existing solutions in two limiting cases: a "rst-order solution for wave
generation in a three-dimensional basin and a second-order solution for wave generation in
a narrow #ume. Example results have been presented which illustrate the in#uence of the
wave heading and basin width on the generated wave "eld. It has been found that due to
sidewall re#ection the basic characteristics of the wave "eld in the basin may di!er
signi"cantly from the desired wave conditions, and that di!erent transverse locations in the
tank located at the same downstream distance from the wave generators may experience
di!erent wave conditions.

The present theory has several applications. For example, it could be used to identify
that region of a given wave basin applicable for testing by comparing actual wave
conditions with target plane-wave conditions, or it could be used to develop an algorithm
that utilizes sidewall re#ections to enhance the testing area of the basin under steep wave
conditions (where second-order e!ects are important). Finally, the complete second-order
solution presented herein also forms a starting point for the development of a second-order
wave-maker signal to eliminate spurious second-order wave components in three-dimen-
sional directional wave basins.
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